Меню

Электрохимическая размерная обработка заготовок деталей машин

Размерная обработка

Рассмотренные в предыдущих разделах методы литья, сварки, обработка давлением не в состоянии обеспечить заданную точность, необходимую для изготовления большинства деталей машин и механизмов. Поэтому полученные указанными методами изделия используются в качестве заготовок. Эти заготовки изготавливают несколько больших размеров с технологическим припуском. Наличие припуска позволяет методами размерной обработки получать деталь требуемой точности путем съема металла припуска.

Все способы размерной обработки деталей классифицируют по виду используемой энергии:

Механическая обработка резанием. Это универсальный метод размерной обработки. Обработка резанием– это процесс получения детали требуемой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхности за счет механического срезания с поверхности заготовки режущим инструментом материала технологического припуска в виде стружки.

Различают следующие виды обработки металлов резанием:

Точениемназывается процесс резания, при котором заготовке сообщается главное вращательное движение, а инструменту (резцу) – поступательное движение подачи. Процесс точения осуществляется на токарных станках.

Сверление является основным способом получения глухих и сквозных цилиндрических отверстий в заготовке. В качестве инструмента при сверлении используется сверло. Для сверления используются сверлильные станки, можно сверлить на токарных станках. При сверлении главное движение – вращательное, а вспомогательное движение – поступательное в осевом направлении.

Фрезерованием называют процесс резания с помощью инструмента – фрезы. Главным движением при фрезеровании является движение фрезы, а вспомогательным – поступательное перемещение заготовки. Фреза представляет собой тело вращения, на одной или нескольких поверхностях которой расположены режущие зубья. Процесс фрезерования выполняется на фрезерных станках.

Строганиемназывается процесс резания, при котором главное движение резания является прямолинейным возвратно-поступательным в горизонтальной плоскости, а движение подачи – периодическое поступательное. Обработку выполняют на строгальных станках, в качестве инструмента используется резец.

Шлифование является процессом обработки заготовок с помощью абразивного круга, состоящего из абразивных зерен и связующего. В качестве абразивного материала применяются природные и искусственно полученные соединения: корунд, наждак, карбид кремния, карбид бора, синтетический и природный алмаз и т.д.

Физико-химические методыразмерной обработки материалов. К ним относятся методы, обеспечивающие съем обрабатываемого материала в результате физико-химических процессов.

Основные методы обработки:

Каждый из методов физико-химической обработки обладает уникальными технологическими возможностями, но все они более энергоемки и менее производительны в сравнении с методами механообработки.

Электроэрозионная обработка основана на использовании явления электрической эрозии – разрушения материала электродов при электрическом пробое межэлектродного промежутка.

Электрохимическая размерная обработка основана на явлении анодного растворения металла в среде электролита под воздействием электрического тока. При этом форма катода – инструмента отображается на поверхности анода – заготовки.

Ультразвуковая абразивная размерная обработка, заключается в разрушении обрабатываемого материала в результате импульсного ударного воздействия торца инструмента на заготовку в абразивной среде. При этом происходит отображение формы инструмента на поверхности заготовки.

К новым методам электрофизической обработки относятся электронно – лучевая и светолучевая обработки. Различие носителей энергии обусловило технологические особенности лучевой обработки.

При электронно–лучевой размерной обработке для съема материала используют кинетическую энергию сфокусированного пучка электронов. Этот процесс осуществляется в вакууме при давлении газа 10 -2 –10 -3 Па. Электроны, ускоренные в электронной пушке, после фокусировки имеют плотность энергии 100–1 000 МВт/см 2 . Пучок электронов попадает в рабочую камеру и бомбардирует обрабатываемую поверхность.

Лазерная размерная обработка использует для съёма материала сфокусированный поток световой энергии, сформированный оптическим квантовым генератором. Световой поток частично отражается, а основная часть передаёт энергию кристаллической решетке, вызывая нагрев, плавление и испарение металла. Лазерная обработка ведётся в импульсном режиме. При удельной мощности 10–100 МВт/см 2 тепловое воздействие луча вызывает разрушение метала за время одного импульса. Разрушение происходит по принципу взрывного объёмного вскипания с выносом материала в виде паров и капель. Процесс обработки металла лучом лазера требует высоких энергозатрат.

1. Богородицкий Н. П., Пасынков В. В., Тареев Б. М. Электротехнические материалы. Л.: Энергоатомиздат, 1985. – 304 с.

2. Материаловедение и технология металлов / Под ред. Г. П. Фетисова. М.: Высш. школа, 2002. – 638 с.

3. Материаловедение и конструкционные материалы / Под ред. В.А. Белого., Минск. Высшая школа, 1989. – 461с.

4. Пасынков В. В., Сорокин В. С. Материалы электронной техники. СПб.: Из-во «Лань», 2003. – 368 c.

5. Электротехнические и конструкционные материалы / Под. ред. В. А. Фи-ликова. М.: Высш. школа, 2000. – 280 с.

6. Электротехнические материалы в 3-х томах, Т.1 / Под общ. ред. В. Г. Ге-расимова, П. Г. Грудинского и др. М.: Энергия, 1980. – 520с.

7. Техника высоких напряжений: Изоляция и перенапряжения в электрических системах: Учебник для вузов/ Под общ. ред. В.П.Ларионова. М.: Энергоатомиздат, 1986. – 464 c.

8. Колесов С. Н. Материаловедение и технология конструкционных материалов: Учеб. для вузов. М.: Высш. школа, 2004. – 519 с.

Реферат: Размерная электрохимическая обработка металлов

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение

Высшего профессионального образования

Томский политехнический университет

Тема: «Размерная электрохимическая обработка металлов»

Выполнили студенты: гр.З-4351

5.Общая характеристика оборудования для ЭХО———————————-17

7. Влияние ЭХО на работающих и на окружающую среду————————19

Важнейшим условием повышения эффективности общественного производства и улучшения качества продукции является ускорение темпов научно-технического прогресса, что достигается, в частности, техническим перевооружением производства и широким внедрением прогрессивной техники и технологии.

Первостепенная роль в решении этих задач принадлежит машиностроению – отрасли промышленности, производящей машины, оборудование, приборы, а также предметы культурно-бытового назначения. При этом к продукции машиностроения предъявляются высокие эксплуатационные и технико-экономические характеристики, особое внимание уделяется улучшению качества выпускаемых машин, оборудования, приборов, повышению их технического уровня, производительности, надежности и безопасности в эксплуатации.

Для достижения высоких эксплуатационных и технико-экономических характеристик необходимо совершенствовать технологию, повышать качество обработки деталей, применять новые конструкционные материалы, совершенствовать и разрабатывать новые технологические методы обработки.

К числу современных технологических процессов, сокращающих трудоемкость обработки металлических материалов, относится электрохимическая обработка (ЭХО) заготовок и деталей в токопроводящем растворе (электролите).

В настоящее время область практического применения ЭХО распространяется от простых операций по отрезке заготовок из труднообрабатываемых сталей и сплавов вплоть до операций по формообразованию сложнопрофильных деталей, например турбинных лопаток.

Созданы и успешно эксплуатируются станки для электрохимического формообразования профиля пера лопаток турбин и компрессоров, отрезки заготовок, заточки режущих инструментов, формообразования отверстий, пазов и щелей и для других технологических операций; разрабатываются и осваиваются новые и совершенствуются существующие технологические процессы и оборудование; повышаются технико-экономические и эксплуатационные характеристики станков и установок для ЭХО.

1.Основы процессов ЭХО.

Явление анодного растворения. Электрохимическая обработка металлов основана на способности их растворяться в результате окислительных реакций, происходящих в среде электропроводного раствора – электролита – под действием на него постоянного электрического тока. Такой химический процесс растворения металлов называют электролизом . Электролиз протекает при наличии источника питания, электролита и двух металлических проводников, называемых электродами, каждый из которых находится в электролитической ванне с электролитом.

В электролите свободными электрическими зарядами являются ионы, образующиеся при растворении, например, в воде солей, кислот или щелочей. Молекулы таких веществ, взаимодействуя с молекулами растворителя – воды, распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. При этом движение ионов в электролите неупорядоченное. Под действием электрического поля, создаваемого источником питания, между электродом, соединенным с положительным полюсом и называемым анодом, и электродом – катодом, соединенным с отрицательным полюсом, возникает направленное движение ионов – отрицательно заряженные ионы (анионы) движутся к аноду, а положительно заряженные ионы (катионы) – к катоду. В электролите, таким образом, возникает электрический ток, представляющий упорядоченное движение положительно и отрицательно заряженных ионов.

Рисунок 1. 1 – электрод-анод; 2 – электролит; 3 – электрод-катод; 4 – источник питания.

Схема движения ионов в наиболее часто применяемом для ЭХО электролите – водном растворе хлористого натрия NaCl– приведена на рисунке 1. при растворении хлористого натрия в воде его молекула распадается на катион натрия Na + и анион хлора Cl – . Вода Н2 О при этом также частично диссоциирует на катионы водорода Н + и анионы гидроксила ОН – . При подаче на электроды напряжения от источника питания анионы гидроксила и катионы водорода вместе с анионами хлора и катионами натрия вынуждены под действием сил электрического поля перемещаться соответственно к катоду и аноду. Атомы поверхностного слоя электрода-анода 1, получая от движущихся к нему анионов хлора и гидроксила дополнительные отрицательные заряды, превращаются в положительные ионы железа. Последние под действием сложных катодных и анодных реакций взаимодействуют с ионами гидроксила и образуют гидрат окиси железа Fe(OH)3 , который в виде нерастворимого химического соединения выпадает в осадок. Таким образом, происходит электрохимическое анодное растворение железа. Одновременно с этим на катоде выделяется водород, выходящий из электролита в виде пузырьков. Реакции, протекающие на катоде, как правило, не разрушают его, т.е. катод при ЭХО не изнашивается.

Параметры анодного растворения. Электролиз протекает в межэлектродном промежутке , под которым принято понимать пространство между поверхностями катода и анода. Следовательно, электрохимическое анодное растворение происходит без непосредственного механического контакта поверхностей катода и анода.

В соответствии с первым законом Фарадея объем V растворенного металла при электролизе прямо пропорционален объемному электрохимическому эквиваленту k данного металла, сила тока I и времени t:

Объемный электрохимический эквивалент k металла зависит от его валентности и атомной массы.

На практике объем растворенного металла не всегда соответствует величине, рассчитанной по этому уравнению. Так, объем растворенного металла существенно зависит от плотности тока на аноде, определяемой отношением силы тока I к площади S анода:

При определенном сочетании параметров процесса – плотности тока, вида обрабатываемого металла, состава и скорости обновления электролита в межэлектродном промежутке – объем V растворенного металла относительно расчетного его значения может уменьшаться, а в некоторых случаях процесс анодного растворения полностью прекращается. Это объясняется образованием на поверхностях анода труднорастворимых окисных пленок, часто называемых пассивными .

При наличии в электролите достаточного количества активирующих анионов, например анионов хлора Cl – , происходит вытеснение из окисной пленки кислорода и разрушение ее без дополнительных затрат электрической энергии. В таких процессах, называемых активными , электрическая энергия расходуется непосредственно на электрохимическое растворение металла анода. Если в электролите недостает активирующих анионов, то на электрохимическое анодное растворение этих пленок затрачивается дополнительная электрическая энергия. При этом эффективность процессов ЭХО существенно снижается. Такой процесс электрохимического анодного растворения металла называют пассивным .

Активное анодное растворение отличается от пассивного особенностями реакций, происходящих на аноде. Активное растворение характеризуется хорошей растворимостью металла анода, так как при этом побочные реакции, кроме основной – анодного растворения, не протекают. Активное растворение металла происходит, например, при электрохимическом травлении. При пассивном растворении часть электрической энергии расходуется на побочные реакции, обеспечивающие удаление с поверхностей анода труднорастворимых окисных пленок. Пассивное растворение металла происходит, например, при электрохимическом полировании.

Повышение плотности тока i относительно оптимального ее значения может привести при определенных условиях к образованию окисных пленок сложного состава, которые не растворяются при электролизе. При этом наступает полная пассивация , т.е. переход поверхностного слоя металла из активного состояния в пассивное, при котором процесс анодного растворения прекращается. Подобные пленки удаляют с поверхностей анода механически, например абразивной обработкой.

Эффективность процессов ЭХО оценивают так называемым коэффициентом выхода металла по току:

где Vф – фактический объем растворенного металла при пропускании определенного количества электричества, см 3 ; V – расчетный объем металла, который должен раствориться при пропускании того же количества электричества, см 3 .

С учетом коэффициента η уравнение, характеризующее объем растворенного металла, приобретает следующий вид:

Vф , как правило, всегда меньше расчетного V, т.е. η + на катоде вступают в реакцию с водой, образуя щелочь NaОН и водород Н2 . Одновременно с этим двуокись кремния SiO3 распадается на окись кремния SiO2 и кислород, в результате чего на аноде образуется силикатная пленка (окись кремния), обладающая высоким электрическим сопротивлением. При напряжении на электродах ниже 15 В силикатная пленка разрушается перемещающимся относительно обрабатываемой поверхности инструментом, что активизирует последующее анодное растворение. Одновременно перемещающийся инструмент удаляет и продукты растворения из зоны обработки. При повышении напряжения на электродах до 17-20 В происходят электрический пробой межэлектродного пространства и эрозионное разрушение металла заготовки; при этом процесс анодно-механической обработки ускоряется в десятки раз.

Электроэрозионно-химическая размерная обработка. Этот процесс ЭХО основан на совмещении размерной электрохимической обработки с электроэрозионным разрушением металла. Одна из особенностей электроэрозионно-химического процесса заключается в том, что напряжение U, подводимое к электродам от источника питания, изменяется во времени t, т.е. имеет импульсную форму. При этом максимальное напряжение Uим электрического пробоя подбирают равным напряжению электрического пробоя Uпр электролита в зависимости от величины а пр межэлектродного промежутка.

Электроэрозионно-химическую обработку называют также электрофизико-химической. Такой термин объективно отражает сущность этого процесса, т.к. здесь совмещены электрофизические (эрозия) и электрохимические (анодное растворение) процессы формообразования.

Все рассмотренные процессы ЭХО протекают при наличии электролитов − химических растворов, обладающих электролитической или ионной проводимостью, т.е. способностью пропускать электрический ток под действием электрического напряжения за счет движения ионов. Этим же свойством обладает вода, спирт и другие жидкости. Электропроводность электролитов значительно меньше электропроводности металлов, у которых носителями тока являются свободные электроны. С повышением температуры при нагреве электропроводность, являющаяся величиной, обратной электрическому сопротивлению, уменьшается у металлов и увеличивается у электролитов.

Различают слабые и сильные электролиты. Первые лишь частично диссоциируют на ионы, причем с ростом концентрации компонентов степень диссоциации и электропроводность их значительно уменьшаются. Сильные электролиты, наоборот, полностью распадаются на ионы, несмотря на значительные концентрации компонентов, при этом существенно повышается их электропроводность. К сильным электролитам относят почти все растворы солей и кислот, а к слабым, например, растворы оснований.

Металлы различных марок активно растворяются только в электролитах определенного состава. Однако на технологические характеристики процессов ЭХО (производительность, точность и качество обработки) влияет не только состав электролита, но и концентрация входящих в него компонентов, его температура, водородный показатель рН, характеризующий концентрацию ионов водорода в электролите, или «кислотность», а также скорость прокачки его в межэлектродном промежутке.

Электролиты для размерной ЭХО.

Название: Размерная электрохимическая обработка металлов
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 09:33:10 22 июня 2011 Похожие работы
Просмотров: 2934 Комментариев: 13 Оценило: 7 человек Средний балл: 4.4 Оценка: 4 Скачать

Компоненты Содержание компонентов в воде, % Удельная электропроводность при 20°С, Ом −1 ·см −1
Натрий азотнокислый NaNO3 30 0,1606 Обработка полостей ковочных штампов, пресс-форм и т.п.
Калий хлористый KCl 21 0,281 Формообразование отверстий
Натрий хлористый NaCl 25 0,2135 Обработка профиля пера турбинных лопаток
Аммоний азотнокислый NH4 NO3 50 0,3633 (15°С) Обработка полостей в деталях из перлитовой стали
Соляная кислота HCl 10 0,6302 Формообразование отверстий небольшого диаметра
Азотная кислота HNO3 2 0,17 Отделочные операции заготовок из алюминиевых сплавов

Технологическими характеристиками процессов ЭХО являются производительность, точность размеров и полученной формы, а также шероховатость обработанных поверхностей. К факторам, влияющим на технологические характеристики процессов ЭХО относят объемный электрохимический эквивалент (k) обрабатываемого металла, состав применяемого электролита, его удельную электропроводность (χ), напряжение источника питания (U), анодную плотность тока (i), коэффициент выхода металла по току (η), величину межэлектродного промежутка (а ) и технологический припуск (z).

Производительность. Производительность размерного электрохимического формообразования характеризуется скоростью анодного растворения металла, выражаемой в линейных (мм/мин) или в объемных (мм 3 /мин) единицах.

Линейную скорость электрохимического растворения (v э.х.р ) определяют по уравнению:

Данное уравнение справедливо при постоянной величине межэлектродного промежутка а , что обеспечивается перемещением инструмента и заготовки относительно друг друга в процессе обработки. При этом скорость их перемещения должна быть равной скорости электрохимического растворения анода. Следовательно, указанное уравнение справедливо для ЭХО с подвижными электродами.

При электрохимическом формообразовании с неподвижными электродами, когда величина межэлектродного промежутка изменяется в процессе в процессе обработки, производительность зависит от многих факторов и в первую очередь от продолжительности процесса обработки. Так, с увеличением времени обработки соответственно увеличивается межэлектродный промежуток и снижается скорость электрохимического растворения.

Общим для обоих случаев электрохимического формообразования с подвижными и неподвижными электродами является то, что производительность таких процессов увеличивается с повышением напряжения, подводимого к электродам, удельной электропроводности электролита и коэффициента выхода металла по току. Снижается производительность этих процессов с увеличением межэлектродного промежутка.

Объемный электрохимический эквивалент k для каждого вида металла имеет определенное значение и поэтому не влияет на производительность размерной ЭХО. Изменением же параметров U, χ, η, а до определенных предельных значений можно существенно снизить или повысить производительность размерного электрохимического формообразования.

Так, напряжение, подводимое к электродам, можно повысить до значений, при которых наступает электрический пробой межэлектродного промежутка. При этом с возникновением электрического пробоя образуется электрический разряд, называемый дугой. Под действием этой дуги происходит нежелательное локальное выплавление электрода-инструмента и заготовки иногда глубиной до 10 мм. Поэтому, чтобы исключить такое явление, электрохимическое формообразование ведут, как правило, при напряжении 15-20 В. В некоторых случаях напряжение на электродах повышают до 30 В, например, при больших межэлектродных промежутках (2-3 мм). Чтобы снизить производительность размерной ЭХО, напряжение на электродах принимают равным 2-2,5 В; при меньших значениях электрического напряжения анодное растворение прекращается.

Электропроводность электролита, зависящая от его состава, концентрации и рабочей температуры, также влияет на производительность размерной электрохимической обработки − с повышением удельной электропроводности увеличивается производительность.

С увеличением рабочей температуры электропроводность электролита повышается и соответственно увеличивается плотность тока на аноде. Повышение скорости прокачки электролита в межэлектродном промежутке способствует более интенсивному удалению из зоны обработки продуктов растворения, что также повышает электропроводность слоя электролита в межэлектродном промежутке. Обратное, т.е. снижение электропроводности, наблюдается при повышении значения рН до 8,5. При этом анодная плотность электрического тока резко снижается, а следовательно, падает и производительность обработки.

С увеличением линейной скорости анодного растворения пропорционально возрастает и объемный съем металла; однако последнее может происходить не только за счет увеличения линейной скорости анодного растворения, но и при одновременной обработке нескольких заготовок или одной заготовки с большой площадью обрабатываемой поверхности.

Шероховатость обработанных поверхностей. При ЭХО качество обработанных поверхностей определяется в основном их шероховатостью.

В отличие от традиционных процессов механической обработки резанием, когда резец, оказывая силовое воздействие на обрабатываемую поверхность, образует на ней деформированные (напряженные) слои металла, электрохимическая обработка не вызывает в поверхностных слоях обрабатываемого металла каких-либо механических напряжений, что в ряде случаев положительно сказывается на качестве обработанных поверхностей.

В общем виде качество обработанных поверхностей зависит от сочетания определенных значений таких параметров, как состав электролита, его температура, скорость прокачки электролита через межэлектродный промежуток и плотность электрического тока.

Шероховатость поверхностей, полученная при размерной электрохимической обработке и при соответствующем составе электролита, как правило, равна 2,5-1,25 мкм по . Такие результаты обеспечиваются, например, при обработке углеродистых и нержавеющих сталей с использованием в качестве электролита раствора хлористого натрия. Повышение температуры электролита отрицательно сказывается на шероховатости поверхностей. Однако в некоторых случаях, например при размерной ЭХО титановых сплавов, с повышением температуры электролита качество обработанной поверхности повышается.

Скорость истечения электролита через межэлектродный промежуток при электрохимическом формообразовании оказывает меньшее влияние на шероховатость обрабатываемой поверхности. Однако при высоких скоростях истечения и соответствующей рабочей температуре электролита шероховатость многих металлов, обрабатываемых электрохимическим способами, можно значительно снизить. Это объясняется более активным растворением выступов микронеровностей при более высоких скоростях истечения электролита. Впадины микронеровностей при этом заполняются продуктами растворения, т.е. пассивируются, что замедляет и даже предотвращает дальнейшее анодное растворение металла во впадинах. Таким образом, за счет избирательного анодного растворения происходит постепенное сглаживание микрорельефа обрабатываемой поверхности и снижение шероховатости.

Повышение плотности электрического тока снижает шероховатость обрабатываемых поверхностей. Однако при плотности тока выше 15-20 А/см 2 дальнейшее улучшение качества обрабатываемых поверхностей прекращается.

При размерной ЭХО некоторых металлов происходит растравливание металла заготовки по границам зерен в условиях определенного сочетания электролита с другими параметрами процесса ЭХО. Глубина растравливания в этом случае может достигать 20-30 мкм.

Точность обработки. Под точностью обработки понимают степень приближения параметров обработанных деталей к заранее установленным чертежом или другой технической документацией номинальным значениям.

Читайте также:  Как вернуть деньги за гарантийный ремонт машины
Adblock
detector